Joalin, the First Nitrogen-containing Xenicane Diterpene isolated from a Brown Seaweed collected off the Senegalese Coast

Graziano Guella, ${ }^{a}$ Ibrahima N'Diaye, ${ }^{\boldsymbol{b}}$ Giuseppe Chiasera ${ }^{a}$ and Francesco Pietra ${ }^{a}$
${ }^{a}$ Istituto di Chimica, Università degli Studi di Trento, 38050 Povo-Trento, Italy
${ }^{\text {b }}$ Department de Chimie, Faculté des Sciences, Université Cheikh Anta Diop, Dakar, Senegal

Joalin (-)-1 isolated from a brown seaweed, Dictyota sp., collected off the Senegalese coast, is a rare xenicane-derived diterpene in that it contains nitrogen.

Brown seaweeds of the order Dictyotales, sea hares and alcyonaceans, have given a plethora of xenicane diterpenes containing no nitrogen, ${ }^{1}$ a feature also of other cembranederived diterpenes, ${ }^{1}$ the sole exception being a family of aminocembranolides recently discovered in a tropical alcyonacean. ${ }^{2}$ Sharp contrast is thus apparent with the nitrogen-containing diterpenes of sponges belonging to the orders Axinellida ${ }^{3}$ and Haplosclerida. ${ }^{4}$ It is interesting, therefore, to have now found in a seaweed, collected off the Senegalese coast, the first nitrogen-bearing xenicane diterpene, joalin (-)-1, which is reported here.

The MeOH extract of the seaweed, Dictyota sp. (Dictyotales), was subjected to extensive chromatography to give joalin $(-)-1$, whose composition $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3}$ was deduced from mass and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Together with ID (assignments from differential double irradiations) and 2D (COSY 120) ${ }^{51} \mathrm{H}$ NMR spectra, this showed that three of the seven unsaturated positions of joalin are accounted for by a tetra substituted and two tri substituted $\mathrm{C}=\mathrm{C}$ bonds. An ester or amide/lactam carbonyl group was also suggested by the signal $\delta_{\mathrm{C}} 174.60$ (s). Choice of the latter was dictated by IR absorption at $v_{\max } 1702 \mathrm{~s}$ cm^{-1}, and the presence of one nitrogen atom was confirmed by HREIMS data. Therefore, joalin must be tricyclic. The portion from $\mathrm{C}-1$ to $\mathrm{C}-4$ and bonding of $\mathrm{C}-9$ to $\mathrm{C}-1$, was based on NMR data for the deshielded protons $4-\mathrm{H}, 9-\mathrm{H}$ and $18-\mathrm{H}$ whose homo- and hetero-nuclear NMR correlations (HMQC and $\mathrm{HMBC})^{6}$ are indicated on the structural formula by double arrows. Thus, oxygen substitution at $\mathrm{C}-4$ was suggested by lowfield resonances for both this carbon and 4-H. Moreover,

$(-)-1$

1 a

the signals $\delta_{\mathrm{C}} 79.47$ (d) and $\delta_{\mathrm{H}} 4.52$ (td) suggested $\mathrm{C}-9$ to be an allylic carbon bearing a methoxy group long-range heterocoupled with $9-\mathrm{H}$. Finally, C-18 bound to both N and O was suggested by lowfield resonance for both this carbon and $18-\mathrm{H}$. Further support for the connectivity was afforded by W H(18)$\mathrm{H}(9)$ coupling and long-range heterocorrelations of $3-\mathrm{H}$ with $\mathrm{C}-2, \mathrm{C}-10$ and $\mathrm{C}-18,4-\mathrm{H}$ with $\mathrm{C}-18,18-\mathrm{H}$ with $\mathrm{C}-1, \mathrm{C}-2$ and $\mathrm{C}-19$, and NH with $\mathrm{C}-2$. The C_{8} isoprenic side-chain was suggested by the $[\mathrm{M}-69]^{+}$EIMS fragment ion and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra. The missing portion $C(5)-C(8)$ could then be constructed from the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data, in particular from the coupling of $7-\mathrm{H}$ with both $3 \times 20-\mathrm{H}$ and $8-\mathrm{H} \beta$, and of the latter with $9-H$. The two moieties $C(9)-C(1)-C(4)$ and $C(5)-C(8)$ could be joined as in the flat structure $(-)-1$ for joalin on the basis of long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ heterocorrelations $H(4)-C(5)$ and $H(9)-C(1)$.

The α position for $9-H$ was revealed by only small couplings with adjacent protons; $9-\mathrm{H} \beta$ would have required a coupling of $c a$. 11 Hz with $8-\mathrm{H} \alpha$. Strong (differentially derived) NOE between $7-\mathrm{H}$ and $3-\mathrm{H}$ indicated that these two protons must be on the same face of the nine-membered ring, thus requiring that $9-\mathrm{H}$ is on the opposite face. Small coupling between 3-H and 4H , suggesting a dihedral angle of $c a .90^{\circ}$, allowed us to assign the α position to O-4. NOE between $4-\mathrm{H}$ and $3 \times 17-\mathrm{H}$, and a complete conformational analysis ${ }^{7}$ of the isoprenic side-chain, allowed us to establish the relative configuration and preferred conformation of joalin, as represented by $1 \mathbf{1 a}$. This is in line with all xenicanes so far reported, ${ }^{1}$ apart from the incorporation of nitrogen and chirality at C-9 which are unique features of joalin.

If the signs of the Cotton effects for joalin $\left(\Delta \varepsilon_{259}+5.8\right.$ and $\Delta \varepsilon_{217.5}-39.6, \mathrm{CDCl}_{3}$) are interpreted as for γ-butenolides, according to assumptions for related cases, ${ }^{8}$ joalin may be assigned the configuration $3 S, 4 R, 9 R, 10 R, 18 R$. This accords with all other xenicanes of algal origin so far reported. ${ }^{1}$ With the caveat about this extrapolation, based on chiroptical data for very limited models, ${ }^{8}(-)-1$ also represents the absolute configuration for joalin.

Apart from the unique feature of nitrogen incorporation, joalin differs notably from previously known xenicanes ${ }^{1}$ in showing high $J_{3,10}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling, 10.4 Hz . Typically, dictyolactone shows $J_{3,10} \approx 0,{ }^{9}$ which, in accordance with the structure in the crystal, ${ }^{9}$ indicates the conformation of the C-3 chain represented in 2 , with $17-\mathrm{Me}$ pointing toward the side of the lactone ring. For joalin, the large $J_{3,10}$ coupling suggests, in agreement with the results from molecular mechanics calculations, ${ }^{7}$ that $17-\mathrm{Me}$ points toward the opposite side of the lactam ring 1a.

The only precedent for an oxygen bridge between $\mathrm{C}-4$ and C -18 in xenicanes is given by dictyotalide, isolated from an Okinawan collection of Dictyota dichotoma. ${ }^{10}$ Bearing a lactone carbonyl at $\mathrm{C}-18$ and a free aldehyde group at $\mathrm{C}-19,{ }^{10}$
dictyotalide may be thought to originate from a xenicane bearing a 4-hydroxy and C-18, C-19 aldehyde groups, followed by oxidation at $\mathrm{C}-18$. A precursor of the same type, with $\mathrm{C}-19$ oxidized to the carboxy group, may be imagined on the route to joalin by way of C-19 amide formation, enzyme-driven amide nitrogen attack at the C-18 aldehyde and aminoketalization by $4-\mathrm{OH}$.

Experimental

The brown seaweed Dictyota sp., likely Dictyota ciliolata Sonder (ex. Kützing) ${ }^{11}$ according to Prof. A. Meinesz and Mr. R. Lemée, who retain a voucher specimen, collected at low tide in September 1991 at the Pointe de Senti à Joal, south of Dakar on the Senegal coast, was immersed in MeOH and homogenized. Solvent evaporation, hexane extraction (1.2 g residue), and flash-chromatography with hexane/EtOAc gradient elution, was followed by evaporation of fractions 33-37 (40 cm^{3} each) and HPLC of the residue on Merck Lichrosorb Si60 ($25 \times 1 \mathrm{~cm}$) with hexane/isopropyl alcohol $97: 3,5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$, to give joalin (-)-1, $t_{\mathrm{r}} 10 \mathrm{~min}$, as colourless, mildly cytotoxic on L1210 cell lines, semicrystals $\mathbf{4 . 5 \mathrm { mg } , 0 . 0 2 \% \text { based on dried }}$ seaweed residue); $[\alpha]_{\mathrm{D}}^{29}-59.0,[\alpha]_{434}^{20}-102\left(\mathrm{CHCl}_{3}, c 0.01\right) ; \dagger$ $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 205(12300)$ and $245 \mathrm{sh} ; \delta_{\mathrm{C}(\mathrm{TMS}=0 \mathrm{ppm})}\left(\mathrm{CDCl}_{3}\right.$, 75.43 MHz) $162.60(\mathrm{~s}, \mathrm{C}-1), 131.91(\mathrm{~s}, \mathrm{C}-2), 49.72(\mathrm{~d}, \mathrm{C}-3), 94.60$ (d, J 154, C-4), 44.82 (t, C-5), 140.05 (s, C-6), 120.92 (d, C-7), 32.06 (t, C-8), 79.47 (d, J 148, C-9), 34.78 (d, C-10), 35.43 (t, C-11), 25.71 (t, C-12), 123.96 (d, C-13), 131.58 (s, C-14), 25.53 (q, C-15), 17.69 (q, C-16), 18.08 ($\mathrm{q}, \mathrm{C}-17$), 85.70 (d, J 172, C-18), $174.60(\mathrm{~s}, \mathrm{C}-19)$ and $19.80(\mathrm{q}, \mathrm{C}-20) ; \delta_{\mathrm{H}(\mathrm{TMS}=0 \mathrm{ppm})}\left(\mathrm{CDCl}_{3}, 299.94\right.$ MHz, J in Hz) $2.77\left(\mathrm{~d}, J_{3,10} 10.4,3-\mathrm{H}\right.$), 4.70 (dd, $J_{4,5 \alpha} 3.6, J_{4,5 \beta}$ $2.2,4-\mathrm{H}$), 2.41 (dd, $\left.J_{\mathrm{gem}} 13.4, J_{5 \alpha, 4} 3.6,5-\mathrm{H} \alpha\right), 2.10$ (dd, $J_{\text {gem }} 13.4$, $J_{5 \text { B.4 }} 2.2,5-\mathrm{H} \beta$), 5.31 (br dd, $J_{7.8 \mathrm{z}} 12.7, J_{7,8 \mathrm{~B}} 3.9,7-\mathrm{H}$), 2.31 (ddd, $J_{g \mathrm{em}} 13.5, J_{8 \alpha, 7} 12.7, J_{8 \alpha, 9} 3.5,8-\mathrm{H} \alpha$), 2.56 (ddd, $J_{\mathrm{gem}} 13.5, J_{8 \beta} 7$ $\left.3.9, J_{8 \mathrm{\beta} .9} 3.1,8-\mathrm{H}_{\mathrm{B}}\right), 4.52\left(\mathrm{td}, J_{9,8 \mathrm{~B}} \approx J_{9,8 \alpha}=3.1, J_{9,18} 1.3\right.$, $9-\mathrm{H}), 3.32(\mathrm{~s}, 9-\mathrm{MeO}), 1.75\left(\mathrm{~d}\right.$ sext, $J_{10,3} 10.4, J_{10.17} \bumpeq J_{10,11}$ $6.5,10-\mathrm{H}), 1.15(\mathrm{~m}, 2 \times 11-\mathrm{H}), 1.85(\mathrm{~m}, 2 \times 12-\mathrm{H}), 5.00(\mathrm{t} \mathrm{sept}$, $\left.J_{13,12} 6.7,1.5,13-\mathrm{H}\right), 1.66(\mathrm{br} \mathrm{s}, 3 \times 15-\mathrm{H}), 1.57(\mathrm{br} \mathrm{s}, 3 \times 16-$ $\mathrm{H}), 1.01\left(\mathrm{~d}, J_{17.10} 6.5,3 \times 17-\mathrm{H}\right), 5.59(\mathrm{br} \mathrm{s}, 3 \times 18-\mathrm{H}), 1.58(\mathrm{~d}$, $\left.J_{20.7} 1.5,3 \times 20-\mathrm{H}\right)$ and $5.93(\mathrm{~s}, \mathrm{NH}) ; m / z$ (EIMS) (\%) $345(7$, $\mathbf{M}^{+}+$), $313\left(4[\mathrm{M}-\mathrm{MeOH}]^{+}\right), 277\left(28, \mathrm{M}^{+}-69-\mathrm{H}\right), 276$ (19 [M -69] ${ }^{+}$), 166 (50), 109 (39), 69 (66) and 41 (100); m/z
(HREIMS) $345.2303\left(\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3}\right.$ requires 345.2304), 313.2031 $\left(\mathrm{C}_{20} \mathrm{H}_{27} \quad \mathrm{NO}_{2}\right.$ requires 313.2042), 277.1672 ($\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires 277.1678), 276.1602 ($\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}$ requires 276.1600).

Acknowledgements

We thank Farmitalia C. Erba Laboratories for the cytotoxicity assays, Prof. A. Meinesz and Mr. R. Lemée (Université de NiceSophia Antipolis) for taxonomy of the seaweed, Mr. M. Rossi and Mr. A. Sterni for skilled technical aid with product isolation and mass spectra, MURST (Progetti 40% and Project for the Cooperation between the Universite Cheikh Anta Diop and the Università di Trento), and CNR, Roma, for financial support.

References

1 D. J. Faulkner, Natural Products Reports, 1984, 251 and 551; 1986, 1, 539; 1988, 613; 1990, 269, 97; 1992, 323.
2 K. Iguchi, K. Nishimura, K. Yamazaki, M. Iwashima and Y. Yamada, Chem. Lett, 1992, 127.
3 K. Ishida, M. Ishibashi, H. Shigemori, T. Sasaki and J. Kobayashi, Chem. Pharm. Bull., 1992, 40, 766; S. A. Fedoreyev, S. G. Ilyin, N. K. Utkina, O. B. Maxinov and M. V. Reshetkyak, Tetrahedron, 1989, 45, 3487; L. V. Manes, S. Naylor, P. Crews and G. J. Bakus, J. Org. Chem., 1985, 50, 284; L. V. Manes, P. Crews, M. R. Kernan, D. J. Faulkner, F. R. Fronczek and R. D. Gandour, J. Org. Chem., 1988, 53, 570; P. J. Scheuer, Acc. Chem. Res., 1992, 25, 433.
4 H. A. Sharma, J. Tanaka, T. Higa, A. Lithgow, G. Bernardinelli and C. W. Jefford, Tetrahedron Lett., 1992, 33, 1593.

5 V. Piantini, O. W. Sorensen and R. R. Ernst, J. Am. Chem. Soc., 1982, 104, 6800; A. Bax and R. Freeman, J. Magn. Reson., 1981, $44,542$.
6 L. Müller, J. Am. Chem. Soc., 1979, 55, 301; G. Gray, Magn. Moments, 1987, III, 6.
7 'PCMODEL 4.0’ Serena Software, Bloomington, Indiana.
8 I. Uchida and K. Kuriyama, Tetrahedron Lett., 1974, 3761; M. Masuko, K. Miyamoto, K. Sakurai, M. Iino, Y. Takeuchi and T. Hashimoto, Phytochemistry, 1983, 22, 1278; H. Shimomoura, Y. Sashida, Y. Mimaki and Y. Minegishi, Phytochemistry, 1987, 26, 582.

9 J. Finer, J. Clardy, W. Fenical, L. Minale, R. Riccio, J. Battaile, M. Kirkup and R. Moore, J. Org. Chem., 1979, 44, 2044.

10 M. O. Ishitsuka, T. Kusumi and H. Kakisawa, J. Org. Chem., 1988, 53, 5010.
11 G. W. Lawson and D. M. John, Beihefte zur Nova Hedwigia, 1982, 70, 140.

Paper 3/02859C
$\dagger[\alpha]_{\mathrm{D}}$ Values recorded in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

